Search results for "Substrate-level phosphorylation"
showing 2 items of 2 documents
NLRP3 controls ATM activation in response to DNA damage
2020
The DNA damage response (DDR) is essential to preserve genomic integrity and acts as a barrier to cancer. The ATM pathway orchestrates the cellular response to DNA double strand breaks (DSBs), and its attenuation is frequent during tumorigenesis. Here, we show that NLRP3, a Pattern Recognition Receptor known for its role in the inflammasome complex formation, interacts with the ATM kinase to control the early phase of DDR, independently of its inflammasome activity. NLRP3 down-regulation in human bronchial epithelial cells impairs ATM pathway activation as shown by an altered ATM substrate phosphorylation profile, and due to impaired p53 activation, confers resistance to acute genomic stres…
The Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) is Sequentially Phosphorylated by Conventional, Novel and Atypical Isotypes of Protein Kin…
1995
The myristoylated alanine-rich C-kinase substrate (MARCKS) is the major protein kinase C (PKC) substrate in many cell types including fibroblasts and brain cells. Here we describe the phosphorylation of MARCKS and the site specificity for different PKC isotypes. Conventional (c)PKC beta 1, novel (n)PKC delta and nPKC epsilon efficiently phosphorylated the MARCKS protein in vitro. The Km values were extremely low, reflecting a high affinity between kinases and substrate. The apparent affinity of nPKC delta (Km = 0.06 microM) was higher than that of nPKC epsilon and cPKC beta 1 (Km = 0.32 microM). The rate of substrate phosphorylation was inversely correlated with affinity and decreased in th…